Performance evaluation of health recommendation system based on deep neural network
نویسندگان
چکیده
منابع مشابه
A Recurrent Neural Network Based Recommendation System
6 Recommendation systems play an extremely important role in e-commerce; 7 by recommending products that suit the taste of the consumers, e-commerce 8 companies can generate large profits. The most commonly used 9 recommender systems typically produce a list of recommendations through 10 collaborative or content-based filtering; neither of those approaches take 11 into account the content of th...
متن کاملAn Audio Based Piano Performance Evaluation Method Using Deep Neural Network Based Acoustic Modeling
In this paper, we propose an annotated piano performance evaluation dataset with 185 audio pieces and a method to evaluate the performance of piano beginners based on their audio recordings. The proposed framework includes three parts: piano key posterior probability extraction, Dynamic Time Warping (DTW) based matching and performance score regression. First, a deep neural network model is tra...
متن کاملFace Recognition based on Deep Neural Network
In modern life, we see more techniques of biometric features recognition have been used to our surrounding life, especially the applications in telephones and laptops. These biometric recognition techniques contain face recognition, fingerprint recognition and iris recognition. Our work focuses on the face recognition problem and uses a deep learning method, convolutional neural network, to sol...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2021
ISSN: 1757-8981,1757-899X
DOI: 10.1088/1757-899x/1131/1/012013